На основании АС равнобедренного треугольника АВС отмечена точка так, что AD = АВ. В треугольнике провели биссектрису AL (точка лежит на отрезке BC). Найдите градусную меру угла 2.ВС А, если DL = DC. ответдайте в градусах.
ОВ=ОС=R, ОА - общая, АВ=АС (по определению - отрезки касательных, проведенных из одной точки, равны) => эти треугольники равны по 3-му признаку=> уголВОА=угол ОСА.
Рассм. треуг. АОВ: т.к. ОВ в 2 раза меньше АО, то угол ОАВ=30 градусов(сторона, лежащая напротив угла в 30 градусов, равна половине гипотенузы). угол ВОА=180-90-30=60 градусов.
Дано: АВ и АС - касательные, ОА=30 см, ОВ=15 см.
Найти: угол ВОС.
Рассмотрим треуг-ки АОВ и АОС:
ОВ=ОС=R, ОА - общая, АВ=АС (по определению - отрезки касательных, проведенных из одной точки, равны) => эти треугольники равны по 3-му признаку=> уголВОА=угол ОСА.
Рассм. треуг. АОВ: т.к. ОВ в 2 раза меньше АО, то угол ОАВ=30 градусов(сторона, лежащая напротив угла в 30 градусов, равна половине гипотенузы). угол ВОА=180-90-30=60 градусов.
угол ВОС= угол ВОА+ угол ОСА= 60+60=120 градусов.
ответ: 120 градусов.
Два треугольника равны по третьему признаку равенства треугольников, если ...
Выберите один из 3 вариантов ответа:
1) две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника ;
2) сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника ;
3) три стороны одного треугольника соответственно равны трём сторонам другого треугольника.
ответ: 3).Задание №2.Дано:ΔABD и ΔCBD;
AB = BC;
AD = DC.
Доказать:ΔABD = ΔCBD
Доказательство:1. AB = BC (по условию) |
2. AD = DC (по условию |⇒ ΔABD = ΔCBD (по третьему признаку).
3. BD - общая сторона |
Что и требовалось доказать!
ответ: 2).