Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Дано : односторонние углы : 1 и 2
и односторонние углы: 3 и 4( см. чертеж )
сумма односторонних углов равна 180 градусов ,согласно правилу углов
обозначим меньший угол 1 за х
тогда другой больший угол 2 за х+20
исходя из условия задачи
х+ х+ 20=180
2х+20=180
2х=180-20
2х= 160
х=160:2
х=80гр -угол 1
80+20=100гр - угол2 - смежный с ним больший угол
угол 3=80гр как накрест лежащие углы
угол 4=100гр как накрест лежащие углы
и соответственно углы, обозначенные штрихами также
угол 1 " =80 гр
угол 2"= 100 гр
угол 3 "= 80 гр
угол 4 "=100 гр
Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12
Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед²
Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2
Площадь трапеции: Sт=h(a+b)/2=6√2
Общая площадь: Sобщ=Sт+Sбок=30+6√2
ответ: a. 30+6