По условию ∠СВД, заключенный между СВ и ВД, равен ∠АВД, заключенному между АВ и ВД ВС×ВА=ВД*ВД; отсюда следует пропорция: ВС:ВД=ВД:АВ. Если две стороны одного треугольника пропорциональны соответственно двум сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны. В подобных треугольниках против сходственных сторон лежат равные углы, ⇒ ∠ВАД=∠ВДС Отношение сходственных сторон DC:AD=3:2, k=3/2 Отношение площадей подобных фигур равно квадрату коэффициента подобия:S ∆ CBD:S ∆ ABD=k²S ∆ CBD:S ∆ ABD=9/4
24см²
Объяснение:
△ABD - равнобедренный т.к. AB = BD по условию,
Пусть BH - высота, она проведена к основанию,
Высота равнобедренного треугольника, проведённая к его основанию является так же и медианой.
⇒ BH - медиана;
AH = HD т.к. H - основание медианы;
AH = AD:2 = 6см:2 = 3см.
△AHB - прямоугольный т.к. ∠AHB = 90°,
Квадрат гипотенузы равен сумме квадратов катетов (т. Пифагора).
AB² = AH²+BH²;
BH² = AB²-AH²;
BH² = 5²-3²;
BH² = 25-9 = 16 = 4²;
BH = 4 см.
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
BH - высота параллелограмма ABCD, проведённая к стороне AD;
S = BH·AD;
S = 4см·6см = 24см².
∠СВД, заключенный между СВ и ВД, равен ∠АВД, заключенному между АВ и ВД
ВС×ВА=ВД*ВД; отсюда следует пропорция:
ВС:ВД=ВД:АВ.
Если две стороны одного треугольника пропорциональны соответственно двум сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны.
В подобных треугольниках против сходственных сторон лежат равные углы, ⇒ ∠ВАД=∠ВДС
Отношение сходственных сторон DC:AD=3:2, k=3/2
Отношение площадей подобных фигур равно квадрату коэффициента подобия:S ∆ CBD:S ∆ ABD=k²S ∆ CBD:S ∆ ABD=9/4