На площині зафіксовано перетворення F, яке точці O ставить у відповідність точку O, а кожній точці X, відмінній від точки O, - середину відрізка OX. Визнач чим при такому перетворенні є образ: а) відрізка б) трикутника в) прямої г) кола д) круга
Пусть $ABC$ - некоторый произвольный треугольник. Проведем через вершину $A$ перпендикуляр к прямой $a$, содержащей сторону $BC$ (рис. 1). Обозначим основание перпендикуляра буквой $D$. Отрезок перпендикуляра $AD$ называют высотой треугольника $ABC$, опущенной из вершины $A$ на сторону $BC$. Сторону $BC$ при этом называют основанием треугольника $ABC$. В тупоугольном треугольнике $ABC$ (см. рис. 1) две высоты ($AD$ и $BE)$ пересекают продолжение сторон и лежат вне треугольника; третья высота ($CF)$ пересекает сторону треугольника.В остроугольном треугольнике (рис. 2) все три высоты лежат внутри треугольника. В прямоугольном треугольнике катеты являются также и высотами. Три прямые, содержащие разные высоты треугольника, всегда пересекаются в одной точке, называемой ортоцентром треугольника. В тупоугольном треугольнике ортоцентр лежит вне треугольника; в остроугольном - внутри; в прямоугольном треугольнике ортоцентр совпадает с вершиной прямого угла. Высоты треугольника, опущенные на стороны треугольника $a,b,c$ обозначаются $h_a ,h_b ,h_c $ соответственно.
АВС - прямоугольный
<MCK = 24°
Найти: <B
1. После построения высоты СМ видим прямоугольный треугольник АМС, <АМС = 90°. Поскольку биссектриса СК делит прямой угол С пополам, то
<АСК = 90 : 2 = 45°.
Зная угол МСК и АСК, находим угол АСМ:
<АСМ = <ACK - <MCK = 45 - 24 = 21°
2. Находим в треугольнике АМС последний неизвестный угол А, зная, что сумма углов треугольника равна 180°:
< А = 180 - <АМС - <АСМ = 180 - 90 - 21 = 69°
3. Находим неизвестный угол В в треугольнике АВС, зная его углы С и А:
<В = 180 - 90 - 69 = 21°
В тупоугольном треугольнике $ABC$ (см. рис. 1) две высоты ($AD$ и $BE)$ пересекают продолжение сторон и лежат вне треугольника; третья высота ($CF)$ пересекает сторону треугольника.В остроугольном треугольнике (рис. 2) все три высоты лежат внутри треугольника. В прямоугольном треугольнике катеты являются также и высотами. Три прямые, содержащие разные высоты треугольника, всегда пересекаются в одной точке, называемой ортоцентром треугольника. В тупоугольном треугольнике ортоцентр лежит вне треугольника; в остроугольном - внутри; в прямоугольном треугольнике ортоцентр совпадает с вершиной прямого угла. Высоты треугольника, опущенные на стороны
треугольника $a,b,c$ обозначаются $h_a ,h_b ,h_c $ соответственно.