На продолжении стороны АВ треугольника ABC за вер- - шину В отмечена точка D, AC = 18 см, ВС = 5 см. Мо- жет ли отрезок AD быть равным 12 см? решение с рисунком
Расстоянием от точки до прямой является длина перпендикуляра, проведенного из точки к прямой. KD - расстояние от точки К до прямых AD и DC и оно равно 12 см.
AD⊥AB как стороны прямоугольника, AD - проекция KА на плоскость прямоугольника, значит KА⊥АВ по теореме о трех перпендикулярах. KА - расстояние от точки К до стороны АВ.
DC⊥BC как стороны прямоугольника, DС - проекция КС на плоскость АВС, значит КС⊥ВС по теореме о трех перпендикулярах. КС - расстояние от точки К до стороны ВС.
AD = BC = 20 см АВ = CD = Sabcd / AD = 180 / 20 = 9 см
ΔADK: по теореме Пифагора АК = √(DA² + DK²) = √(400+ 144) = √544 = 4√34 см
ΔCDK: по теореме Пифагора CK = √(DK² + DC²) = √(144 + 81) = √225 = 15 см
ответ: d(K ; AB) = AK = 4√34 см d(K ; BC) = KC = 15 см d(K ; CD) = KD = 12 см d(K ; AD) = KD = 12 см
АС = ВС = АВ = а = 3√3 см. Ребро ДС = 5см МС - медиана и высота, т.к. треугольник АВС правильный. (МС перп. АВ) МС = а·sin 60 = 3√3 · 0.5 √3 = 4.5cм В ΔМДС гипотенуза ДС = 5см, катет МС = 4,5см, катет МД найдём по теореме Пифагора МД² = ДС² - МС² = 25 - 20,25 = 4,75 = 19/4 МД = 0,5√19 см Площадь ΔМДС равна половине произведения катетов МС и МД S МДС = 0,5·4,5·0,5√19 = 1,125 √19 или (9√19)/8 см² ответ: (9√19)/8 см² PS что-то странный ответ получился. Посмотри, данные вы не перепутали? Может, величина стороны корень из 3 делить на три или ещё что?
KD - расстояние от точки К до прямых AD и DC и оно равно 12 см.
AD⊥AB как стороны прямоугольника,
AD - проекция KА на плоскость прямоугольника, значит
KА⊥АВ по теореме о трех перпендикулярах.
KА - расстояние от точки К до стороны АВ.
DC⊥BC как стороны прямоугольника,
DС - проекция КС на плоскость АВС, значит
КС⊥ВС по теореме о трех перпендикулярах.
КС - расстояние от точки К до стороны ВС.
AD = BC = 20 см
АВ = CD = Sabcd / AD = 180 / 20 = 9 см
ΔADK: по теореме Пифагора
АК = √(DA² + DK²) = √(400+ 144) = √544 = 4√34 см
ΔCDK: по теореме Пифагора
CK = √(DK² + DC²) = √(144 + 81) = √225 = 15 см
ответ:
d(K ; AB) = AK = 4√34 см
d(K ; BC) = KC = 15 см
d(K ; CD) = KD = 12 см
d(K ; AD) = KD = 12 см
МС - медиана и высота, т.к. треугольник АВС правильный. (МС перп. АВ)
МС = а·sin 60 = 3√3 · 0.5 √3 = 4.5cм
В ΔМДС гипотенуза ДС = 5см, катет МС = 4,5см, катет МД найдём по теореме Пифагора МД² = ДС² - МС² = 25 - 20,25 = 4,75 = 19/4
МД = 0,5√19 см
Площадь ΔМДС равна половине произведения катетов МС и МД
S МДС = 0,5·4,5·0,5√19 = 1,125 √19 или (9√19)/8 см²
ответ: (9√19)/8 см²
PS что-то странный ответ получился. Посмотри, данные вы не перепутали? Может, величина стороны корень из 3 делить на три или ещё что?