Пусть ABCD - равнобедренная трапеция, E, F, K, L - середины сторон трапеции, тогда EK=15 см - средняя линия трапеции, FL=6 см - высота и O=FL∩EK - точка пересечения диагоналей четырехугольника EFKL. Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба). Площадь ромба можно найти по формуле: S=1/2*d1*d2, где d1 и d2 - диагонали ромба. S=1/2*6*15=45 (см²). ответ: 45 см².
Секущая состоит из внешней (вне окружности) и внутренней (хорде) части. Наибольшая секущая проходит через центр окружности и содержит диаметр, – все остальные секущие будут меньше, так как любая хорда меньше диаметра
Обозначим А точку, из которой проведены касательная и секущая, В - точку касания, О - центр окружности, АС - секущую, М - её пересечение с окружностью.
Задачу можно решить по т.Пифагора или по свойству касательной и секущей.
1) Соединим О и В.
В ∆ АОВ катет АВ=24 - касательная, катет ВО=R - радиус, гипотенуза АО - секущая без радиуса СO=32-R/
По т.Пифагора
ВО²=АО*-АВ²
R²=(32-R)²-24*
R*=1024-64R+R²-576
64R=448 ⇒R=7
S=πR²=49π см²
* * *
2) Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.(теорема).
АС•AM=АВ²
АМ=АС-2R
Тогда
32•(32-2R)=576
Решив уравнение, получим R=7 и площадь круга 49π см²
Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба).
Площадь ромба можно найти по формуле:
S=1/2*d1*d2, где d1 и d2 - диагонали ромба.
S=1/2*6*15=45 (см²).
ответ: 45 см².
Секущая состоит из внешней (вне окружности) и внутренней (хорде) части. Наибольшая секущая проходит через центр окружности и содержит диаметр, – все остальные секущие будут меньше, так как любая хорда меньше диаметра
Обозначим А точку, из которой проведены касательная и секущая, В - точку касания, О - центр окружности, АС - секущую, М - её пересечение с окружностью.
Задачу можно решить по т.Пифагора или по свойству касательной и секущей.
1) Соединим О и В.
В ∆ АОВ катет АВ=24 - касательная, катет ВО=R - радиус, гипотенуза АО - секущая без радиуса СO=32-R/
По т.Пифагора
ВО²=АО*-АВ²
R²=(32-R)²-24*
R*=1024-64R+R²-576
64R=448 ⇒R=7
S=πR²=49π см²
* * *
2) Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.(теорема).
АС•AM=АВ²
АМ=АС-2R
Тогда
32•(32-2R)=576
Решив уравнение, получим R=7 и площадь круга 49π см²