На прямой отложены два равных отрезка AC и CB. На отрезке CB взята точка D, которая делит его в отношении 3:4, считая от точки В. Найдите расстояние между серединами отрезков АС и DB, если CD=10с
Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
Так как основания трапеции параллельны, а диагонали трапеции являются секущими, то ∠DWS =∠ESW, ∠WDE = ∠ESW - как внутренние накрест лежащие углы при параллельных прямых DW и SE и секущих DE и SW.
Следовательно △DOW подобен △ EOS по двум углам (первый признак подобия треугольников).
Коэффициент подобия этих треугольников равен отношению длин сходственных сторон:
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия:
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
10 см
Объяснение:
Так как основания трапеции параллельны, а диагонали трапеции являются секущими, то ∠DWS =∠ESW, ∠WDE = ∠ESW - как внутренние накрест лежащие углы при параллельных прямых DW и SE и секущих DE и SW.
Следовательно △DOW подобен △ EOS по двум углам (первый признак подобия треугольников).
Коэффициент подобия этих треугольников равен отношению длин сходственных сторон:
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия:
см
Meньшее основание трапеции SDWE равно 10 см