Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
1)Так как АР, PE, PD, PF - радиусы данной окружности ⇒ АР = РЕ = PD = PF.
2)Рассмотрим ΔAPD и ΔFPE:
АР = РЕ, из 1).
DP = PF, из 1).
Вертикальные углы равны.
∠APD = ∠FPE, так как они вертикальные.
3) Из 2) ⇒ ΔAPD = ΔFPE, по 1 признаку равенства треугольников.
⇒ ∠А = ∠F = 30°
Сумма углов треугольника равна 180°
⇒ ∠APD = 180° - (30° + 20°) = 130°
Сумма смежных углов равна 180°
⇒ ∠х = 180° - 130° = 50°
Если в окружности две хорды пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
⇒ NE * EF = ME * EP
Пусть х - МЕ.
х * 6 = 4 * 3
6х = 12
х = 2
2 - МЕ
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
1)Так как АР, PE, PD, PF - радиусы данной окружности ⇒ АР = РЕ = PD = PF.
2)Рассмотрим ΔAPD и ΔFPE:
АР = РЕ, из 1).
DP = PF, из 1).
Вертикальные углы равны.
∠APD = ∠FPE, так как они вертикальные.
3) Из 2) ⇒ ΔAPD = ΔFPE, по 1 признаку равенства треугольников.
⇒ ∠А = ∠F = 30°
Сумма углов треугольника равна 180°
⇒ ∠APD = 180° - (30° + 20°) = 130°
Сумма смежных углов равна 180°
⇒ ∠х = 180° - 130° = 50°
ответ : 50°Задача №9Решение:Если в окружности две хорды пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
⇒ NE * EF = ME * EP
Пусть х - МЕ.
х * 6 = 4 * 3
6х = 12
х = 2
2 - МЕ
ответ: 2