на рисунке 215 изображены прямые ав и сд пересекающиеся в точке о. обратите внимание на углы аoc и aod. какие эти углы? Какой угол они составляют?какой угол составляют углы aoc aod?что вы знаете об этих составленых углах?Какой вывод можно сделать об этих углах aoc и bod?
Сторона правильного шестиугольника равна радиусу описанной окружности, т.е. а = R.
Т.к. проведя все радиусы в шестиугольнике, вписанном в окружность, мы разобьем его на 6 равносторонних треугольников (см. рис.), а площадь получившегося треугольника можно найти по формуле
1/2 · R · R · sin60° = 1/2 · R² · √3/2 = R²√3/4
(полный круг составляет 360°, тогда угол при вершине равностороннего треугольника будет равен 60°, а sin60° = √3/2), то площадь шестиугольника будет равна:
1) Находим радиус вписанной окружности, а для этого по формуле Герона находим площадь: S = √(p(p-a)(p-b)(p-c)). р = (6+7+5)/2 = 9 S = √(9(9-6)(9-7)(9-5)) = √216 = 14.69693846 r = S / p = 14.69693846 / 9 = 1.63299316. Так как треугольники подобны, то площади пропорциональны квадрату коэффициента пропорциональности. Найдем высоту треугольника АВС: Hb= 2S / b = 2*14.69693846 / 7 = 4.1991253. Высота треугольника ВКМ меньше на 2 радиуса: hb = Hb - 2r = 4.1991253 - 2*1.63299316 = 0.93313895 Коэффициент пропорциональности к = hb / Hb = 0.9331389 / 4.1991253 = 0.22222222, к² = 0.04938272. Тогда S(BKM) = 14.69693846* 0.04938272 = 0.725774739 кв.ед. А периметр равен Р(АВС)*к = (6+7+5)*0.22222222 = = 18*0.22222222 = 4. 2) В этой задаче не улавливается зависимость между заданными площадями треугольников. 3) В этой задаче что то неверно в условии. Если диаметр , проходящий через вершину В, делит хорду KL пополам, то эта хорда перпендикулярна диаметру. При этом она не пересекает сторону ВС - смотри прилагаемый чертёж.
Сторона правильного шестиугольника равна радиусу описанной окружности, т.е. а = R.
Т.к. проведя все радиусы в шестиугольнике, вписанном в окружность, мы разобьем его на 6 равносторонних треугольников (см. рис.), а площадь получившегося треугольника можно найти по формуле
1/2 · R · R · sin60° = 1/2 · R² · √3/2 = R²√3/4
(полный круг составляет 360°, тогда угол при вершине равностороннего треугольника будет равен 60°, а sin60° = √3/2), то площадь шестиугольника будет равна:
6 · R²√3/4 = 3R²√3/2 = 3 · 2²√3/2 = 6√3 (см²)
ответ: 6√3 см².
р = (6+7+5)/2 = 9
S = √(9(9-6)(9-7)(9-5)) = √216 = 14.69693846
r = S / p = 14.69693846 / 9 = 1.63299316.
Так как треугольники подобны, то площади пропорциональны квадрату коэффициента пропорциональности.
Найдем высоту треугольника АВС:
Hb= 2S / b = 2*14.69693846 / 7 = 4.1991253.
Высота треугольника ВКМ меньше на 2 радиуса:
hb = Hb - 2r = 4.1991253 - 2*1.63299316 = 0.93313895
Коэффициент пропорциональности к = hb / Hb = 0.9331389 / 4.1991253 = 0.22222222,
к² = 0.04938272.
Тогда S(BKM) = 14.69693846* 0.04938272 = 0.725774739 кв.ед.
А периметр равен Р(АВС)*к = (6+7+5)*0.22222222 =
= 18*0.22222222 = 4.
2) В этой задаче не улавливается зависимость между заданными площадями треугольников.
3) В этой задаче что то неверно в условии.
Если диаметр , проходящий через вершину В, делит хорду KL пополам, то эта хорда перпендикулярна диаметру. При этом она не пересекает сторону ВС - смотри прилагаемый чертёж.