На рисунке 35 изоброжен сосуд цилиндрической формы. Высота его составляет 12 см а ширина 8 см. В центре основания есть отверстие для трубочки для питья. Какова длина трубочки? Длина видимой части трубочки составляет 2 см.
Вравнобедренном треугольнике высота к основанию и медиана к основанию - это одно и то же. а расстояние от середины боковой стороны до основания в 2 раза меньше, чем расстояние от вершины, то есть - высота к основанию.половина высоты к основанию равна 9, значит вся эта высота (она же - медиана) равна 18. точка пересечения медиан делит медиану на части в отношении 1/2, считая от стороны, то есть - в данном случае - на отрезки 6 и 12 см (отношение 1/2, сумма 18). поскольку медиана эта перпендикулярна основанию, то 6 см - и есть расстояние от точки пересечения медиан до основания. ответ 6 см.
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.