Смотри рисунок. Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные. х+2х=180 3х=180 х=60 - это угол OCB. Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов Запишем для угла OCB: cos 60 = BC/AC поскольку по условию AC=100, имеем cos 60= BC/100⇒ BC = 100× cos 60 cos 60 - это табличная величина = 1/2 BC= 100×1/2=50 Запишем для угла OBC: sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25 sin 30 - это табличная величина = 1/ 2 ответ: OC=25
Объяснение:
Решение.
АВС - треугольник.
∠1 - ∠2 =10*.
Найдем внутренний угол А.
∠А=180*-140*=40*.
На угол 1 и угол 2 остается
180*-40*=140*;
∠1+∠2=140*;
Известно, что ∠1 -∠2 =10*. Откуда ∠1=∠2+10*;
∠2+10*+∠2 = 140*;
2∠2=140*-10*;
∠2=65*;
∠1-∠2=10*;
∠1=10*+∠2=10*+65*=75*.
***
Дано треугольник АВС. Внешний угол В равен 110*.
Найдем внутренний угол В:
∠В=180*-110*=70*;
Δ АВС - равнобедренный (по условию), у котрого углы при основании равны ∠1=∠2.
∠1=∠2=(180*-70*)/2 = 55*.
***
Дано тупоугольный треугольник АВС.
Внешний угол при вершине равен 50*.
Найдем внутренний угол В:
180*-50*=130*.
∠1+∠2=180*-130*=50*;
Пусть угол 1 равен 2х. Тогда угол 2 равен 3х.
2х+3х=50*;
5х=50*;
х=10*;
Угол 1 равен 2х=2*10=20*;
Угол 2 равен 3х=3*10=30*.
Пусть угол OCK=2х, тогда угол OCB равен х. Их сумма 180градусов, т.к. они смежные.
х+2х=180
3х=180
х=60 - это угол OCB.
Рассмотрим треугольник ОВС - он прямоугольный (угол ВОС=90градусов, угол ОСВ = 60 градусов) значит угол ОВС = 180-90-60=30 градусов
Запишем для угла OCB:
cos 60 = BC/AC поскольку по условию AC=100, имеем
cos 60= BC/100⇒ BC = 100× cos 60
cos 60 - это табличная величина = 1/2
BC= 100×1/2=50
Запишем для угла OBC:
sin 30 = OC/BC ⇒ OC= BC × sin 30= 50 × 1/2=25
sin 30 - это табличная величина = 1/ 2
ответ: OC=25