Tg C = √3 / √6 = √(3/6) = 1 / √2. Через этот тангенс находим синус С = tg C / (+-√(1+tg²C)) = 1 /(√2*(1+(1/2))) = 1 / √3. Высота в прямоугольном треугольнике АВС равна ha = √6*sin C = = √6*(1 / √3) = √2. Расстояние от точки S до ВС - это гипотенуза треугольника, где один катет SA = 2 см, а второй - высота ha = √2. Отсюда искомое расстояние от точки S до ВС = √(2²+(√2)²) = √6 = = 2,44949 см. Высоту ha можно было найти по другой формуле: ha =2√(p(p-a)(p-b)(p-c)) / a. Для этого надо найти диагональ А = √((√3)²+(√6)²) = √9 = 3 см. А рисунок к этой задаче очень прост - сначала вычертить план треугольника и высоту к гипотенузе, а затем вертикальную плоскость с отрезком SA и высотой ha.
Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
Объяснение:
Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
.
Теперь находим площадь сечения:
≈706,86