Дано :
Четырёхугольник ABCD — квадрат.
AD = 1 (ед).
BD — диагональ = √2 (ед).
Найти :
соs(∠BDA) = ?
Квадрат — четырёхугольник, всё стороны которого равны, а все углы прямые.
Рассмотрим прямоугольный ∆ABD.
Косинус острого угла прямоугольного треугольника — отношение прилежащего катета к гипотенузе.
В нашем случае катет, прилежащий к ∠BDA — AD, а гипотенуза — BD (так как лежит против прямого угла).
То есть —
cos(∠BDA) = AD/BD
cos(∠BDA) = 1 (ед) / √2 (ед)
cos(∠BDA) = 1/√2
Или —
cos(∠BDA) = (√2)/2 (одно и тоже).
(√2)/2.
АЕ = ЕС, значит ΔAEC - равнобедренный.
∠ЕАС = ∠ЕСА (свойство равнобедренного треугольника), обозначим их α.
Пусть АВ = а, тогда АС = 2а.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Тогда
ВЕ:ЕС = АВ:АС = 1:2
Пусть ВЕ = х, тогда ЕС = EA = 2х.
В ΔЕАС по теореме косинусов для угла ЕАС:
cosα = (AE² + AC² - EC²)/(2AE·AC)
cosα = (4x² + 4a² - 4x²)/(8ax) = a/(2x)
В ΔВАЕ по теореме косинусов для угла ВАЕ:
cosα = (AB² + AE² - BE²)/(2AB·AE)
cosα = (a² + 4x² - x²)/(4ax) = (a² + 3x²)/(4ax)
(a² + 3x²)/(4ax) = a/(2x)
a² + 3x² = 2a²
a² = 3x²
a = x√3
cosα = a/(2x) = x√3/(2x) = √3/2 ⇒ α = 30°
∠ВСА = 30°
∠ВАС = 2∠ВСА = 60°
∠АВС = 180° - ∠ВСА - ∠ВАС = 90°
ответ: 30°, 60°, 90°.
Дано :
Четырёхугольник ABCD — квадрат.
AD = 1 (ед).
BD — диагональ = √2 (ед).
Найти :
соs(∠BDA) = ?
Квадрат — четырёхугольник, всё стороны которого равны, а все углы прямые.
Рассмотрим прямоугольный ∆ABD.
Косинус острого угла прямоугольного треугольника — отношение прилежащего катета к гипотенузе.
В нашем случае катет, прилежащий к ∠BDA — AD, а гипотенуза — BD (так как лежит против прямого угла).
То есть —
cos(∠BDA) = AD/BD
cos(∠BDA) = 1 (ед) / √2 (ед)
cos(∠BDA) = 1/√2
Или —
cos(∠BDA) = (√2)/2 (одно и тоже).
(√2)/2.
АЕ = ЕС, значит ΔAEC - равнобедренный.
∠ЕАС = ∠ЕСА (свойство равнобедренного треугольника), обозначим их α.
Пусть АВ = а, тогда АС = 2а.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Тогда
ВЕ:ЕС = АВ:АС = 1:2
Пусть ВЕ = х, тогда ЕС = EA = 2х.
В ΔЕАС по теореме косинусов для угла ЕАС:
cosα = (AE² + AC² - EC²)/(2AE·AC)
cosα = (4x² + 4a² - 4x²)/(8ax) = a/(2x)
В ΔВАЕ по теореме косинусов для угла ВАЕ:
cosα = (AB² + AE² - BE²)/(2AB·AE)
cosα = (a² + 4x² - x²)/(4ax) = (a² + 3x²)/(4ax)
(a² + 3x²)/(4ax) = a/(2x)
a² + 3x² = 2a²
a² = 3x²
a = x√3
cosα = a/(2x) = x√3/(2x) = √3/2 ⇒ α = 30°
∠ВСА = 30°
∠ВАС = 2∠ВСА = 60°
∠АВС = 180° - ∠ВСА - ∠ВАС = 90°
ответ: 30°, 60°, 90°.