Построим прямую из угла А к углу С. т.к. угол А прямой (90), то прямая АС делит его пополам, => угол САD = 30 (это 180-(60+90)=30). АD является гипотенузой в треугольнике САD. По правилу - против угла 30 лежит катет равный половине гипотенузы. Катет СD = 7, => АD (гипотенуза) =14 см. Построим из угла ACD прямую, перпендикулярную основанию АD в точке Н и получим прямой угол. Угол С = 30. По тому же свойству о угле в 30 градусов получаем, что отрезок НD = 3,5. BC=AD-HD=14-3,5=10,5 ответ: г) 10,5
Построим параллелограм АВСД, ВД-меньшая диагональ, угВАД=60, угВДА=30град. На сторону АД опустим высоту ВЕ, угАВЕ=30, т.к угВЕА=90, угВАЕ=60., угВЕД=60 град, т.к. ВЕД=90, а угВДЕ=30, тогда угАВД=угАВЕ+угЕВД=30+60=90, значит АВД-прямоуг треу, мы знаем, что сторона, в прямоуг треуг лежащая пропив угла 30 град= половине гипотен.,АД-гипотен=ВС=20, тогда АВ=АД/2=10. теперь рассмотрим треуг АВЕ, АЕ лежит против угла 30 град, знач =АВ/2, тоесть АЕ=10/2=5. Найдем ВЕ, ВЕ²=АВ²-АЕ² по теореме пифагора, ВЕ²=10²-5²=100-25=75 ВЕ=√75=5√3. Площадь параллелограмма равна S=h*a, где h-высота ВЕ, а-сторона, на которую опустили высоту а=АД=ВС S=ВЕ*АД=5√3*20=100√3
BC=AD-HD=14-3,5=10,5
ответ: г) 10,5