На рисунке изображен авсd и круговые сектора кам и вср, кот. имеют одну общую точку о. площадь сектора вср равна 9пи см^2, ао=4 см найти радиус сектора вср
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
рішення: 1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х * 2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х * 3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180 3х = 90 х = 30 градусів, повертаємося до позначень, отримуємо: В трапеції АВСД уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *. Відповідь: 60;60;120;120
ответ:
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
s∆amb=6√2•√82=6√164=12√41
s полн=18+2•24+12√41=66+12√41
объяснение:
АВСД - р/б трапеция
АВ=СД
уг АВД=90*
уг АДВ = уг СДВ
углы трапеции -?
Решение:
1) В р/б трапеции углы при основаниях равны, значит если обозначим уг АДВ = уг СДВ = х градусов, тогда угол ДАВ = х*
2) АД || BC и ВД - секущая, значит уг АДВ = уг ДВС = х*
3) В трапеции углы прилежащие к одной боковой стороне в сумме 180*, получаем:
2х+х+90=180
3х=90
х=30 градусов, возвращаемся к обозначениям, получаем:
В трапеции АВСД
уг А=уг Д=60*, уг В=уг С= 180-60=120*.
ответ:60*; 60*; 120*; 120*.
Дано:
АВСД - р / б трапеція
АВ = СД уг АВД = 90 *
уг АДВ = уг СДВ
кути трапеції -?
рішення:
1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х *
2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х *
3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180
3х = 90
х = 30 градусів, повертаємося до позначень, отримуємо:
В трапеції АВСД
уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *.
Відповідь: 60;60;120;120