докажем, что треугольники bmn и lkd- равны, у них:
1) bm=kd по условию
2)mn= lk т.к. mnlk параллелограмм
3) углы bmn и lkd равны, т.к. lmn и lkn равны из-за mnkl- параллелограмм, а bmn и lkd являются смежными для этих двух углов, тоесть тоже равны
дальше докажем, что треугольники ncd и abl равны, у них:
1) al=nc по условию
2) bl= dn т.к. kd=bm по условию, а ml=nk из-за параллелограмма mnkl
3)углы alb и dnc равны, т.к. углы bnm+mnk= dlk+mlk т.к. параллелограмм mnkl и равные треугольники, следовательно смежные этим углам alb и dnc равны
теперь мы знаем, что ab=dc т.к. треугольники abl и ncd равны и bc=ad, т.к. представляют собой сумму сторон bn и nc, al и ld, которые в свою очередь тоже принадлежат равным треугольникам, следовательно abcd- параллелограмм по признаку, где стороны попарно равны
Объяснение:
докажем, что треугольники bmn и lkd- равны, у них:
1) bm=kd по условию
2)mn= lk т.к. mnlk параллелограмм
3) углы bmn и lkd равны, т.к. lmn и lkn равны из-за mnkl- параллелограмм, а bmn и lkd являются смежными для этих двух углов, тоесть тоже равны
дальше докажем, что треугольники ncd и abl равны, у них:
1) al=nc по условию
2) bl= dn т.к. kd=bm по условию, а ml=nk из-за параллелограмма mnkl
3)углы alb и dnc равны, т.к. углы bnm+mnk= dlk+mlk т.к. параллелограмм mnkl и равные треугольники, следовательно смежные этим углам alb и dnc равны
теперь мы знаем, что ab=dc т.к. треугольники abl и ncd равны и bc=ad, т.к. представляют собой сумму сторон bn и nc, al и ld, которые в свою очередь тоже принадлежат равным треугольникам, следовательно abcd- параллелограмм по признаку, где стороны попарно равны