Так как QP ∥ SR, то, по свойству параллельных прямых,
внутренние накрест лежащие углы равны, то есть ∠PQR = ∠SRQ.
Так как QL и RK – биссектрисы, то
∠PQL = ∠RQL = ∠QRK = ∠SRK.
При пересечении прямых QL и RK секущей QR внутренние накрест лежащие углы равны,
то есть ∠RQL = ∠QRK.
Тогда, по первому признаку параллельности прямых,
QL ∥ RK.
Так как QP ∥ SR, то, по свойству параллельных прямых,
внутренние накрест лежащие углы равны, то есть ∠PQR = ∠SRQ.
Так как QL и RK – биссектрисы, то
∠PQL = ∠RQL = ∠QRK = ∠SRK.
При пересечении прямых QL и RK секущей QR внутренние накрест лежащие углы равны,
то есть ∠RQL = ∠QRK.
Тогда, по первому признаку параллельности прямых,
QL ∥ RK.