Проведу высоту из угла в 120 градусов к большему основанию. Рассмотрю образовавшийся треугольник(предположим, что АВР, где АB - гипотенуза, АР - высота трапеции). Угол Р= 90 градусов, угол В=180-120=60 градусов, угол А=90-60=30 градусов. Выходит, что ВР=1/2АВ(свойство треугольников с углами 30, 60 и 90 градусов), ВР=2,5. Основания могу обозначить только через х и х+2,5, т.к. недостаточно данных для решения задачи. Но если у вас есть другие данные, для составления уравнения берите именно х и х+2,5.
1. Пусть точка D не совпадает с концами отрезка АВ (рис. 1).
Тогда AD < AB, AD < 3,
а ВС > СD, BC > 3 так как в прямоугольном треугольнике BCD гипотенуза BC больше катета.
Итак, AD < 3, а BC > 3, а по условию AD = BC, значит такое расположение точки D невозможно.
2. Точка D не может совпадать с точкой А, так как тогда длина отрезка AD = 0, и ВС = AD = 0.
3. Значит точка D совпадает с точкой В. В таком случае ΔАВС прямоугольный, равнобедренный.
По теореме Пифагора:
АС = √(АВ² + ВС²) = √(9 + 9) = √18 = 9√2