Нарисуй вектор а, отложи от его конца луч под углом к вектору а. Начало вектора в помести в конец вектора а и изобрази на луче вектор в, соедини начало вектора а и конец вектора в, получишь искомый вектор с = а + в и|с| = |а + в|
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы.
По т.Пифагора с²=a²+b², где с - гипотенуза, a и b – катеты.
с=√(9²+12²)=15
R=15:2=7,5 см
Подробно.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров к его сторонам.
Срединные перпендикуляры прямоугольного треугольника пересекаются на середине гипотенузы, следовательно центр описанной окружности - середина гипотенузы, и радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. R=7,5 см.
Нарисуй вектор а, отложи от его конца луч под углом к вектору а. Начало вектора в помести в конец вектора а и изобрази на луче вектор в, соедини начало вектора а и конец вектора в, получишь искомый вектор с = а + в и|с| = |а + в|
Это называется векторным треугольником.
По теореме косинусов: |с|² = |а|² + |в|² - 2·|а|·|в|·cos 120°
|с|² = 25 + 64 - 2·5·8·(-0,5) = 129
|с|= |а + в|= √129
Вот если бы надо было найти разность векторов а и в, то получилось бы хорошее число:
|d| = |а-в| = √(25 + 64 + 2·5·8·(-0,5) = √49 = 7
Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы.
По т.Пифагора с²=a²+b², где с - гипотенуза, a и b – катеты.
с=√(9²+12²)=15
R=15:2=7,5 см
Подробно.
Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров к его сторонам.
Срединные перпендикуляры прямоугольного треугольника пересекаются на середине гипотенузы, следовательно центр описанной окружности - середина гипотенузы, и радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. R=7,5 см.