№1 За угол между диагоналями принимается больший из углов,значит им будет угол ВОС. Угол АВО=СРО=30гр. как накрест лежащие при параллельных прямых АР и ВС.Угол СВО =90-30=60гр. .Значит уол ВСО тоже равен 60 гр. так как точкой пересечения диагонали прямоугольника делятся на равные отрезки т.е ВО=СО .Из этого следует,что треугольник ВОС равнобедренный значит угол ВОС=180-(60+60)=60гр.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10 КД=10-6=4. Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10 ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52 решаем уравнение х=6,КР=10+6=16
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10
КД=10-6=4.
Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА
ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10
ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52
решаем уравнение х=6,КР=10+6=16
Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH.
Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции.
Sтрапеции=27+33/2 * 6 = 180 см^2
ответ:180 см^2