Нсли правильно нарисовать заданную фигуру, то получится, что ребро пирамиды- это боковая сторона получившегося равнобедренного треугольника, а диагональ основания пирамиды- это основание равнобедренного треугольника. Высота, проведенная с основанию равнобедренного треугольника, также является и медианой, и биссектрисой. Медиана делит основание пополам. Получается прямоугольный треугольник с катетом(основанием, разделенным пополам) 8√2 и гипотенузой( боковой стороной) 18. Надо найти другой катет( то есть высоту правильной четырёхугольной пирамиды) при теоремы Пифагора. Пусть гипотенуза равна с, известный катет а, а неизвестный- это b. Получится:
ответ: высота правильной четырехугольной пирамиды равна 14.
Дано: A(2,3-4), B(3,0,1), C(0,2,3), D(4,-2,0), E(-3,2,1)
Найти: a) расстояние от точки A до:
1)координатный плоскостей.
Это расстояние равно соответственной координате точки.
До плоскости xOy = 4,
xOz =3,
yOz = 2.
2)координатных осей Ox = √(3² + (-4)²) = √(9 + 16) = √25 = 5,
Oy = √(2² + (-4)²) = √(4 + 16) = √20 = √5,
Oz = √(2² + 3²) = √(4 + 9) = √13.
3)начала координат:
OA = √(2² + 3² + (-4)²) = √(4 + 9 + 16) = √29.
б) на оси z найти точку, равноудаленную от точек D и E.
Примем точку на оси Oz М(0; 0; z).
Используем свойство равенства расстояния MD и ME.
(4² + (-2)² + z²) = ((-3)² + 2² + (z-1)²),
16 + 4 + z² = 9 + 4 + z² - 2z + 1,
2z = -6,
z = -6/2 = -3.
ответ: точка М(0; 0; -3).
ответ: высота правильной четырехугольной пирамиды равна 14.