Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°
50,56 см
Объяснение:
1) В треугольнике ABD стороны AD и AB являются катетами, а BD - гипотенузой. По теореме Пифагора находим АВ:
АВ^2 = DB^2 - AD^2
АВ^2 = 18^2 - 14^2 = 324 - 196 = 128
АВ = √128 = √64 * 2 = 8√2
2) Периметр прямоугольника равен:
(АВ + AD) * 2 = (14 + 8√2) * 2 = 28 + 16√2 = 4(7+4√2) см.
Тот же ответ можно записать по-другому, с округлением до сотых, т.к. √2 является иррациональным числом.
4(7+4√2) = 4* (7 + 4*1,41) = 4* (7 + 5,64) = 4 * 12,64 = 50,56 см
ответ: 4(7+4√2) см, или (что одно и то же) 50,56 см