строим прямоугольную трапецию ABCD, А и D - прямые углы, из угла D проводим луч, который пересекает CB в середине, точку пересчения назовём N, проводим среднюю линию трапеции, она пересекает CB в точке N(N-середина CB), а AD в точке M (M-середина AD)
так как средняя линяя равна полусумме оснований, MN=1/2 AB+DC
так как луч выходит из D под углом 45*, угол MND тоже равен 45*, следовательно и MDN = 45*, треугольник MDN - прямоугольный и равнобедренный, значит MD=MN,
AD=AM+MD, а так как AM=MD=MN, AD=2MN, а MN = 1/2 AB+DC, следовательно, AD=2x1/2 AB+DC= AB+DC
3. Проведем высоту трапеции СН. АС биссектриса прямого угла, значит угол САН=45° и АН=СН.
По Пифагору АС²=АН²+СН². 36=2АН². АН=СН=3√2.
В прямоугольном треугольнике НСD: угол НDС равен 60°, значит <HCD=30°. Против угла 30° лежит катет, равный половине гипотенузы.
Тогда по Пифагору: СD²=HD²+СН² или 4HD²-HD²=СН² или 3HD²=18.
Тогда HD=√6. Основание трапеции АD=АН+HD=3√2+√6.
Итак, АD=3√2+√6, ВС=АН=3√2, СН=3√2.
Площадь трапеции S=(ВС+АD)*СН/2 или
S=(3√2+3√2+√6)*3√2/2=(36+3√12)/2=(36+6√3)/2=18+3√3.
ответ: S=18+3√3.
Можно и так:
Площадь трапеции равна сумме площадей квадрата АВСН и треугольника НСD, то есть АН*СН+(1/2)СН*НD или
S=18+(1/2)*3√2*√6=18+3√3.
https://ru-static.z-dn.net/files/da2/e36a12b04c0e021fcafca118d718dbb1.jpg - Фото.
4. Фото - https://ru-static.z-dn.net/files/d58/5555571f58e1c84bb6d68558b3a1d0a8.jpg
сложно будет без рисунка, но ладно
строим прямоугольную трапецию ABCD, А и D - прямые углы, из угла D проводим луч, который пересекает CB в середине, точку пересчения назовём N, проводим среднюю линию трапеции, она пересекает CB в точке N(N-середина CB), а AD в точке M (M-середина AD)
так как средняя линяя равна полусумме оснований, MN=1/2 AB+DC
так как луч выходит из D под углом 45*, угол MND тоже равен 45*, следовательно и MDN = 45*, треугольник MDN - прямоугольный и равнобедренный, значит MD=MN,
AD=AM+MD, а так как AM=MD=MN, AD=2MN, а MN = 1/2 AB+DC, следовательно, AD=2x1/2 AB+DC= AB+DC