Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники.
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС.
а) Выразить m через h.
АО - радиус описанной окружности.
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды.
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ с k=1/2.
Если это прямоугольный (допустим,ABC) , то один угол будет равен 90градусов, а другой 45(по условию), значит третий угол будет равен тоже 45 градусов (180-45-90=45 градусов). Отсюда следует, что это равнобедренный треугольник, потому что углы при основании равны, если мы проведем медиану BH, то она будет и перпендикуляром, поэтому треугольник HBC прямоугольный. Угол BHC равен 90 градусов, угол HCB равен 45, значит и угол CBH равен 45, отсюда следует, что треугольник равнобедренный, поэтому BH=CH=4см. Гипотенуза CA состоит из отрезков HC и HA, они будут равны, т.к. медиана делит сторону пополам. Отсюда следует, что искомая гипотенуза равна 8 см.
Правильный тетраэдр - треугольная пирамида, все грани которой правильные треугольники.
Обозначим пирамиду МАВС, центры eё граней E,P,T.
Основание О высоты МО пирамиды - центр описанной (и вписанной) окружности равностороннего ∆ АВС.
а) Выразить m через h.
АО - радиус описанной окружности.
Формула R=m/√3
MO²=АМ²-АО²
h²=m²-m²/3
2m²=3h
m=h√(3/2)=(h√6)/2
б) Выразить n через m.
Центр правильного треугольника - точка пересечения его медиан. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины. В таком же отношении делятся ребра пирамиды.
МТ:ТН=2:1, Mc:MC=2:3; ⇒ cb:CB=2:3
Центры граней лежат в плоскости, параллельной основанию АВС и образующей в сечении треугольник abc~АВС с коэффициентом подобия k=2/3. ab=bc=ac-=2/3m
Расстояния между центрами граней - стороны треугольника, образованного при соединении центров граней, ∆ abc~ ∆ РТЕ с k=1/2.
n=ab/2=1/2•(2/3)m
n=m/3.