на сторонах AB и BC параллелограмма ABCD позначено відповідно точки E і F, так що АЕ: AB=5:6, BF: BC=2:3. Виразіть вектор EF через вектори AB = a i AD = b.
1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
Длина этого прямоугольника по условию задачи 30+10=40 см Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора. d²=40²+30²= Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5. Диагональ равна 50 см
1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора.
d²=40²+30²=
Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5.
Диагональ равна 50 см