На сторонах ab и cd квадрата abcd выбраны точки e и f соответственно. отрезки ef и ac пересекаются в точке o. найдите величину угла cof, если известно, что ∠bef=73
1)Пусть АВСД - данный параллелограмм,угол А-тупой, ВН -высота. АН=3 см, НД=7см. Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=30/10=3 см. В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=3, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/3= 30 градусов. В параллелограмме АВСД угол А=углуС=30 градусов, а угол В=углу Д= (360-3*30)=270/3=90 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС)/АВ*АД. (записать в виде дроби), SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
1)Пусть АВСД - данный параллелограмм,угол А-тупой, ВН -высота. АН=2 см, НД=8см. Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см. В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов. В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС)/АВ*АД. (записать в виде дроби), SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=30/10=3 см.
В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=3, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/3= 30 градусов.
В параллелограмме АВСД угол А=углуС=30 градусов, а угол В=углу Д= (360-3*30)=270/3=90 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС)/АВ*АД. (записать в виде дроби), SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см.
В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов.
В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС)/АВ*АД. (записать в виде дроби), SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).