В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Maksim55666
Maksim55666
06.05.2021 02:52 •  Геометрия

В параллелограмме ABCD на сторонах AB и BC отложены отрезки AK=LC. Докажите, что точка E пересечения прямых AL и CK лежит на биссектрисе угла ADC.

Показать ответ
Ответ:
mrscom
mrscom
15.10.2020 14:44

Доказано. См ниже

Объяснение:

Продлим СК за точку К до пересечения с прямой AD в точке Т.

Обозначим KA=LC=a ,  КВ=b , BL=c.

Для доказательства используем теорему, если в треугольнике TCD выполняется соотношение CD/DT=CE/ET тогда DE  является биссетрисой угла D.

Рассмотрим треугольники КВС и КАТ.  Они подобны по 2-м углам.

Тогда КВ/KA=BC/AT => b/a =(a+c)/AT=> AT= a(a+c)/b     (1)

Рассмотрим треугольники ELC и EАТ.  Они подобны по 2-м углам.

=> CE/TE=LC/AT= a*b/(a*(a+c)) = b/(a+c)

Рассмотрим теперь отношения CD:DT

CD=a+b

DT=a+c+AT=(b(a+c)+a(a+c))/c = (a+b)(a+c)/b

CD:DT=(a+b): ((a+b)(a+c)/b)=b/(a+c)

Таким образом СЕ:ТЕ= CD:DT=b/(a+c) , что и  требовалось доказать.

Таким образом DO - биссектриса угла D

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота