На сторонах DF і EF трикутника DEF позначено такі точки P і K відповідно що DP:PF=1:4 EK : KF=4:6 виразіть вектори EF FD DE KD PE через вектори DP=m FK = n
рассмотрим треугольник абе, параллелограмм абсд. так как сумма углов треугольника равна 180 градусов то угол абе равен 180-90(угол аеб)-60(угол бае) =30 градусов. в прямоугольном треугольнике катет напротив угла в 30 градусов равен половине гипотенузы, значит 2ае=ба, отсюдого следует что 2ае=ад - ад=ба. так как в параллелограмме противоположные стороны попарно равны, то ад=вс=ба=сд. значит все стороны этого параллелограмма равны, значит каждая сторона этого параллелограмма равна 36/4=9
теперь рассмотрим треугольник бсд. так как бс=сд, трегольник является равнобедренным или равносторонним. значит углы у основания бд равны.Также по свойству параллелограмма противоположные углы попарно равны, то есть угол бад равен углу бсд. сумма углов треугольника равна 180 градусов, значит угол сбд или сдб равны (180-60)/2=60 градусов. так как в этом треугольнике все углы равны 60 градусов треугольник - равносторонний, значит бд=вс=сд=9
рассмотрим треугольник абе, параллелограмм абсд. так как сумма углов треугольника равна 180 градусов то угол абе равен 180-90(угол аеб)-60(угол бае) =30 градусов. в прямоугольном треугольнике катет напротив угла в 30 градусов равен половине гипотенузы, значит 2ае=ба, отсюдого следует что 2ае=ад - ад=ба. так как в параллелограмме противоположные стороны попарно равны, то ад=вс=ба=сд. значит все стороны этого параллелограмма равны, значит каждая сторона этого параллелограмма равна 36/4=9
теперь рассмотрим треугольник бсд. так как бс=сд, трегольник является равнобедренным или равносторонним. значит углы у основания бд равны.Также по свойству параллелограмма противоположные углы попарно равны, то есть угол бад равен углу бсд. сумма углов треугольника равна 180 градусов, значит угол сбд или сдб равны (180-60)/2=60 градусов. так как в этом треугольнике все углы равны 60 градусов треугольник - равносторонний, значит бд=вс=сд=9
ответ бд равен 9
Объяснение:
1) D(-8; 0)
2) D(0; 4)
Пошаговое объяснение:
Уточнение задачи: Даны точки А(1; 2), B(-3; 0) и C(-4; 2). Определите координаты точки D так, чтобы выполнялось равенство для векторов:
1) AB=CD 2) AB=DC.
Определим вектор AB={-3-1; 0-2}={-4; -2}.
1) Случай AB=CD.
Пусть D(x; y). Так как направления векторов AB и CD совпадают, а длины векторов AB и CD равны, то CD={-4; -2}. С другой стороны
CD={x-(-4); y-2}={x+4; y-2}. Тогда из равенства CD={-4; -2} получим:
x+4=-4 и y-2=-2 или x= -8 и y= 0.
ответ: D(-8; 0).
2) Случай AB=DC.
Пусть D(x; y). Так как направления векторов AB и DC совпадают, а длины векторов AB и DC равны, то DC={-4; -2}. С другой стороны
DC={-4-x; 2-y}. Тогда из равенства DC={-4; -2} получим:
-4-x=-4 и 2-y=-2 или x=0 и y=4.
ответ: D(0; 4).
Объяснение: