На сторонах угла ABC отложены равные отрезки BA = BC = 7,6 см и проведена биссектриса угла. На биссектрисе находится точка D, расстояние которой до точки C равно 7,3 см. 1. Назови равные треугольники: ΔDCB = Δ
.
Докажи это. Назови соответствующие равные элементы (сторона, угол, сторона) в треугольнике ΔDCB и в равном ему треугольнике:
=
;
∡
= ∡
;
как
сторона.
2. Рассчитай периметр четырёхугольника ABCD.
PABCD=
см.
В основании пирамиды SABCD лежит параллелограмм ABCD с центром O. Точка M лежит на отрезке SO, причём OM:MS =1:3.
а) Постройте сечение пирамиды плоскостью, проходящей через
прямую AM параллельно прямой BD.
б) В каком отношении плоскость сечения делит ребро SC?
Объяснение:
а)Проведем через М прямую В₁D₁║ВD .
«Если заданная прямая a, не лежащая в плоскости α, параллельна прямой b, которая принадлежит плоскости α, тогда прямая a параллельна плоскости α.»
Получим точки В₁ и D₁. В плоскости ( АСS) продолжим прямую АМ до пересечения с SC. Соединим В₁-Р и D₁-Р .Полученное сечение искомое.
б)В равнобедренном ΔАСS( т.к пирамида правильная) , высота SO-является медианой. По т. Менелая
СР/РS*(SM/OM)*(AO/AC)=1,
СР/РS*(3/1)*(AO/2AO)=1,
СР/РS*(3/1)*(1/2)=1,
СР/РS=2/3