На сторонах угла ∡ ABC точки A и C находятся на равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥ BD, CD⊥ BE.
1. Докажи равенство треугольников ΔAFD и ΔCFE.
2. Определи величину угла, под которым перпендикуляр CD пересекает BA, если AE пересекает BC под углом 74°.
1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE:
ΔBA = Δ.
По какому признаку доказывается это равенство?
По первому
По второму
По третьему
Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
углы
EAB
ABE
CBD
DCB
BEA
BDC
Стороны
AE
DB
EB
BA
BC
CD
По какому признаку доказывается равенство ΔAFD и ΔCFE?
По третьему
По первому
По второму
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
углы
ADF
FCE
EFC
DFA
CEF
FAD
Стороны
EF
DF
FA
FC
AD
CE
2. Величина угла, под которым перпендикуляр CD пересекает BA —
°.
Биссектриса АС делит угол XAK пополам. значит угол CAK=60/2=30 градусов. следовательно треугольник ACK - равнобедренный с основанием AK, углами при основании по 30 градусов. AC=CK как боковые стороны равнобедренного треугольника.
Найдем AC. AC является гипотенузой прямоугольного треугольника AXC. Угол XAC=30 градусов, т.к. биссектриса поделила 60 градусов пополам. Значит угол ACX=60 градусов (180-30-90)
Вычислим длину гипотенузы по известному катету XC и углу между ними ACX
AC = XC/ cos(60 град)
cos60 град= 1/2 = 0,5
AC = 6/ 0,5 = 12
CK=12
PR/RL=PI/IL.
Аналогично в тр-ке PSL SI - биссектриса и PS/SL=PI/IL.
Пришли к классической теореме биссектрис для тр-ка PRS:
PI/IL=PR/RL=PS/SL.
Пусть коэффициент подобия дробей PR/RL и PS/SL равен k, тогда:
PS/SL=(PR·k)/(RL·k).
Сложим числители и знаменатели этих подобных дробей:
(PR+PS)/(RL+SL)=(PR+PR·k)/(RL+RL·k)=(PR·(1+k))/(RL·(1+k))=PR/RL.
Но RL+SL=RS, значит:
PI/IL=PR/RL=(PR+PS)/RS=(4+6)/8=10/8=5:4 - это ответ
PS. Таким образом это стандартное отношение отрезков биссектрисы на которые её делит точка пересечения биссектрис треугольника.
В общем виде отношение таких отрезков биссектрисы считая от вершины угла можно представить как (a+b)/c, где в знаменателе сторона, к которой проведена биссектриса.