На сторонах угла ∡ ABC точки A и C находятся на равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥ BD, CD⊥ BE. 1. Докажи равенство треугольников ΔAFD и ΔCFE. 2. Определи величину угла, под которым перпендикуляр CD пересекает BA, если AE пересекает BC под углом 56°.
1. Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE: ΔBA = Δ .
По какому признаку доказывается это равенство? По второму По третьему По первому
Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
углы стороны DCB EAB ABE BEA CBD BDC
CD DB BA EB AE BC
По какому признаку доказывается равенство ΔAFD и ΔCFE? По второму По первому По третьему
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
углы стороны FCE EFC ADF CEF DFA FAD
CE EF FC DF AD FA
2. Величина угла, под которым перпендикуляр CD пересекает BA — °.
ДАНО: окружность, AB-диаметр, DM-касательная, DA перпенд. DM
Док-ть: АС- биссектриса угла BAD
ДОКАЗАТЕЛЬСТВО: проведем диаметр AB, такой, что он параллелен DM; проведем перпендикуляр из центра окружности к касательной; также проведем луч AC.
Рассмотрим прямоугольник ADCO: AO=OC(как радиусы), СO= DA(т.к. прямые DM и AB параллельны, а OC и DA - перпендикуляры) Рассмотрим треугольник АСО: угол О=90 градусов, АО=ОС => треугольник равнобедренный => угол САО=АСО= (180-90)\2= 45 градусов Угол АСО = DAC(как накрест лежащие при параллельных прямых АВ и DM) И так как угол DAO равен углу САО(DAO=CAO=45),то АС является биссектрисой угла OAD(или BAD- это просто один и тот же угол)
Большинство задач с медианой решается через дополнительное построение параллелограмма с диагональю, равной удвоенной медиане.
Продолжим медиану ВМ за точку М и отложим на продолжении точку Р так, что МР = МВ. Соединив точку Р с точками А и С получим параллелограмм АВСР (по признаку: "Четырёхугольник является параллелограммом, если его диагонали пересекаются и точкой пересечения делятся пополам".
Рассмотрим треугольники ADB и РВС.
AD=BP=2*BM (по построению), BC=BD (дано), АВ= РС (по построению).
Треугольники равны по трем сторонам, равны и их соответственные углы. <BDA = <PBC = 40°.
Док-ть: АС- биссектриса угла BAD
ДОКАЗАТЕЛЬСТВО: проведем диаметр AB, такой, что он параллелен DM;
проведем перпендикуляр из центра окружности к касательной;
также проведем луч AC.
Рассмотрим прямоугольник ADCO: AO=OC(как радиусы), СO= DA(т.к. прямые DM и AB параллельны, а OC и DA - перпендикуляры)
Рассмотрим треугольник АСО: угол О=90 градусов, АО=ОС => треугольник равнобедренный => угол САО=АСО= (180-90)\2= 45 градусов
Угол АСО = DAC(как накрест лежащие при параллельных прямых АВ и DM)
И так как угол DAO равен углу САО(DAO=CAO=45),то АС является биссектрисой угла OAD(или BAD- это просто один и тот же угол)
<ADB = 40°
Объяснение:
Большинство задач с медианой решается через дополнительное построение параллелограмма с диагональю, равной удвоенной медиане.
Продолжим медиану ВМ за точку М и отложим на продолжении точку Р так, что МР = МВ. Соединив точку Р с точками А и С получим параллелограмм АВСР (по признаку: "Четырёхугольник является параллелограммом, если его диагонали пересекаются и точкой пересечения делятся пополам".
Рассмотрим треугольники ADB и РВС.
AD=BP=2*BM (по построению), BC=BD (дано), АВ= РС (по построению).
Треугольники равны по трем сторонам, равны и их соответственные углы. <BDA = <PBC = 40°.