На сторонах углаaoc взяты точки d и b так что точка d принадлежит отрезку oa точка b отрезку oc известно что od=ob oba=odc найдите сторону dc если ab=12см
1)Так как это высота то он угол OAP равен 90гр , если AOP равен 15 гр то APO равен 75 гр .Угол OHK=APO=75
2) Диагонали ромба пересекаются под прямым углом тогда другой из углов равен 90-16'5=73'5. То есть углы равны по два 16'5*2=33 гр и по два. 73'5*2=147 гр . 3) Продлим перпендикуляр на на его же длину , то есть получим длину того же перпендикуляра только в два раза больше , так как он равен высоте проекций точки пересечения диагоналей , значит надо от этого перпендикуляра , перпендикулярна ей построить такую же прямую ,получим первую сторону , для остальных трёх надо проделать ту же операцию , получим квадрат.
Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
2) Диагонали ромба пересекаются под прямым углом тогда другой из углов равен 90-16'5=73'5. То есть углы равны по два 16'5*2=33 гр и по два. 73'5*2=147 гр . 3) Продлим перпендикуляр на на его же длину , то есть получим длину того же перпендикуляра только в два раза больше , так как он равен высоте проекций точки пересечения диагоналей , значит надо от этого перпендикуляра , перпендикулярна ей построить такую же прямую ,получим первую сторону , для остальных трёх надо проделать ту же операцию , получим квадрат.