На стороне ав треугольника авс, как на диаметре построили круг. точка с лежит за этим кругом. стороны ас и вс пересекают круг в точках d и m соответственно. найдите угол асв, если площади треугольников dmc и abc соотносятся как 1 к 4
ADMB - вписанный четырехугольник. Сумма противоположных углов вписанного четырёхугольника равна 180°. ∠A+∠DMB=180° ∠DMC+∠DMB=180° ∠A=∠DMC △DCM~△ACB (по двум углам) Площади подобных треугольников относятся как квадрат коэф. подобия. k=√(1*4)=1/2 DM/AB=1/2
Если хорда равна радиусу, то она стягивает дугу 60°. (DM=AB*sin(a/2) <=> sin(a/2)=1/2 <=> a=60°) ∪DM=60°
Угол между двумя секущими, проведенными из одной точки, равен полуразности большей и меньшей высекаемых дуг. ∠ACB= (180-∪DM)/2 =60°
∠A+∠DMB=180°
∠DMC+∠DMB=180°
∠A=∠DMC
△DCM~△ACB (по двум углам)
Площади подобных треугольников относятся как квадрат коэф. подобия.
k=√(1*4)=1/2
DM/AB=1/2
Если хорда равна радиусу, то она стягивает дугу 60°.
(DM=AB*sin(a/2) <=> sin(a/2)=1/2 <=> a=60°)
∪DM=60°
Угол между двумя секущими, проведенными из одной точки, равен полуразности большей и меньшей высекаемых дуг.
∠ACB= (180-∪DM)/2 =60°