На стороне равностороннего треугольника как на диаметре построена полуокружность, пересекающая две другие стороны треугольника. Соедини центр полуокружности с точками её пересечения со сторонами треугольника. Какие следствия из условия можно получить? Опираясь на них, докажи, что угловые меры образовавшихся дуг будут равны.( рисунок не нужен)
1)SK=3KP=>3×1,2=3,6
KP=1,2
SP-? = KP+SK=4,8
ответ:4,8
2)PK=15
LK>PL на 3
LK-?
LK-3=PL
15-3=12 - уровнял части. Теперь LK=PL. Раз так, то делим 12 на 2=6
Теперь можно узнать LK и PM
PM=6
LK=6+3=9
ответ:9
3)MP=19
KL=11
MK-?
MK=LP
MK=(MP-KL)÷2=>(19-11)÷2=4
Oтвет:MK=4
4)NQ=28
LN=1/4NQ=>1/4×28=7
LQ-? - LN+NQ=>28+7=35
ответ:35
5)RS=12
RM÷MS=3 ÷ 9 =>RM=3;MS=9
RM -?
ответ:RM=3
6)MS=2,1
KS=0,7
KS/MK-?
MK=MS-KS=>2,1-0,7=1,4
KS/MK=0,7/1,4=0,5
ответ:KS/MK=0,5
7)AB=18
BD=4
AC/AB-?
AC=CD
AC=(AB-BD)÷2=14/2=7
AC/AB=7/18=0,4
ответ:AC/AB=0,4
8)Важная часть условия не видна
9)QM=70%SQ
SM=5,1
SQ-?
Не смог решить
10)Важная часть условия не видна
√241.
Объяснение:
1. Пусть в ∆АВD проведена медиана АО к большей стороне, имеющей длину 22 см.
На продолжении луча АО отложим отрезок ОС, равный отрезку АО.
АО=ОС=m.
2. В получившемся четырёхугольнике АВСD диагонали АС и BD делятся точкой пересечения пополам, тогда АВСD является параллелограммом по признаку.
3. По свойству диагоналей параллелограмма
АС² + ВD² = 2•(AB² + AD²), тогда в нашем случае
(2m)² + 22² = 2•(18²+20²)
4m² + 484 = 2•(324+400)
4m² + 484 = 1448
4m² = 1448 - 484
4m² = 964
m² = 964:4
m² = 241
m = √241.