На стороне ВС прямоугольника АВСD взята точка М так, что АМ=10, АВ=8, АС=17. Найдите МС , площадь четырехугольника АМСD. 2.Один из углов ромба равен 600 ,сторона равна 10 см
Найти площадь ромба.
3. Один из углов ромба равен 600 ,сторона равна 10 см
Найти площадь ромба.
4. Смежные стороны параллелограмма равны см и 30 см, а острый угол равен 450. Найдите площадь и периметр параллелограмма.
ответ:24 пи*корень 2
α = 45°
Объяснение:
Смотри прикреплённый рисунок.
Из вершины В ромба проводим высоту ВК.
ВК = а · sin A = a · sin 60° = 0.5a√3.
Соединим точку Е с точкой К. ВК является проекцией наклонной ЕК на плоскость АВСD. Поскольку ВК - высота ромба. то ВК ⊥ AD.
По теореме о трёх перпендикулярах: если AD ⊥ BK (проекции наклонной ЕК), то AD⊥ ЕК. Следовательно, ∠ЕКВ = α является линейным углом, служащим мерой двугранного угла между плоскостями ADE и АВСD.
Найдём этот угол.
tg α = BE : BK = 0.5a√3 : 0.5a√3 = 1.
Следовательно, ∠α = 45°