1) Рассмотрим сечение, проходящее через центры сфер.
Отрезок, соединяющий центры, перпендикулярен диаметру сечения. Точкой пересечения они делятся пополам и образуют прямоугольный треугольник с катетами 5 и 12. Гипотенуза этого треугольника - искомый радиус. Треугольник с катетами 5 и 12 из Пифагоровых троек (прямоугольные треугольники с целочисленными сторонами), следовательно, R=13 (можно решить по т.Пифагора с тем же результатом).
* * *
2) Центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости, т.е. на плоскости, делящей этот двугранный угол пополам.
Искомое расстояние - диагональ квадрата со сторонами, равными радиусу шара ( биссектриса СО его прямого угла - см. рисунок),
1) Рассмотрим сечение, проходящее через центры сфер.
Отрезок, соединяющий центры, перпендикулярен диаметру сечения. Точкой пересечения они делятся пополам и образуют прямоугольный треугольник с катетами 5 и 12. Гипотенуза этого треугольника - искомый радиус. Треугольник с катетами 5 и 12 из Пифагоровых троек (прямоугольные треугольники с целочисленными сторонами), следовательно, R=13 (можно решить по т.Пифагора с тем же результатом).
* * *
2) Центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости, т.е. на плоскости, делящей этот двугранный угол пополам.
Искомое расстояние - диагональ квадрата со сторонами, равными радиусу шара ( биссектриса СО его прямого угла - см. рисунок),
СО=r:sin45°=√2
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)