1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
26
Объяснение:
1) Из рисунка следует, что внутренние стороны треугольников основания являются средними линиями большого треугольника, так как соединяют середины сторон, и, следовательно, равны:
1/2 стороны, обозначенной 2 штрихами (у серого треугольника);
1/2 стороны, обозначенной 1 штрихом (у белого треугольника).
Таким образом, 3 стороны белого треугольника равны 3 сторонам серого треугольника, - значит, эти треугольники равны.
2) Фигура, обозначенная S, является параллелограммом, так как его противоположные стороны равны (это вытекает из выше доказанного равенства треугольников) и параллельны (средние линии параллельны основаниям). Следовательно, S в 2 раза больше площади серого треугольника:
S = 13 · 2 = 26