Начертили развернутый угол АВС. От точки B провели 2 луча BE и BN. При этом известно что угол EBN больше угла АВЕ в 6 раз. А NBC больше угла EBN в 2 раза. Найдите чему равен каждый угол.
В абсолютно любой трапеции (не важно, чему равны ее стороны))) треугольники, получившиеся после пересечения диагоналей трапеции, обладают следующими свойствами: треугольники, опирающиеся на боковые стороны трапеции (выделены желтым цветом на рис.)), имеют равные площади... это равновеликие треугольники... это легко доказывается... треугольники, опирающиеся на основания трапеции, всегда подобны, т.к. они содержат вертикальные (равные) углы и накрест лежащие (тоже равные) углы (при параллельных основаниях трапеции) треугольники AOD и DOC в принципе могут быть подобны, если у них есть два равных угла... равные углы будут лежать против соответственных сторон, например, против самых маленьких сторон треугольников ---самые маленькие углы))) найдем их косинусы по т.косинусов cos(BDC) = (12² + 10² - 2.5²) / 240 = 23775/24000 = 317/320 = 0.990625 cos(BDA) = (12² + 7.5² - 5²) / 180 = 17525/18000 = 701/720 = 0.9736(1) косинусы не равны ---> углы не равны ---> треугольники НЕ подобны)))
Для того, чтобы составить уравнение прямой, необходимо знать координаты направляющего вектора и координаты точки, принадлежащей этой прямой.
Общее уравнение прямой Ах+Ву+С=0
Направляющий вектор для прямой вектор СО. Для того, чтобы найти его координаты нужно из координат конца вектора вычесть соответствующие координаты начала вектора.
С(-6; -3), О(0; 0)
Вектор СО = (0-(-6); 0-(-3))
Вектора СО = (6;3)
Коэффициент А в уравнении прямой равен ординате направляющего вектора, взятой с противоположным знаком.
А=-у=-3
Коэффициент В в уравнении прямой равен абсциссе направляющего вектора.
В=х=6
Подставляем коэффициенты А и В в общее уравнение прямой.
-3х+6у+С=0
Теперь координаты точки, принадлежащей прямой, подставляем в полученное равенство и находим С.
Точка О(0;0) принадлежит прямой.
-3*0+6*0+С=0
С=0
-3х+6у=0 - искомое уравнение прямой. Левую и правую часть уравнения сократим на (-3).
треугольники, получившиеся после пересечения диагоналей трапеции, обладают следующими свойствами:
треугольники, опирающиеся на боковые стороны трапеции
(выделены желтым цветом на рис.)), имеют равные площади...
это равновеликие треугольники... это легко доказывается...
треугольники, опирающиеся на основания трапеции, всегда подобны,
т.к. они содержат вертикальные (равные) углы и
накрест лежащие (тоже равные) углы
(при параллельных основаниях трапеции)
треугольники AOD и DOC в принципе могут быть подобны,
если у них есть два равных угла...
равные углы будут лежать против соответственных сторон,
например, против самых маленьких сторон треугольников
---самые маленькие углы))) найдем их косинусы по т.косинусов
cos(BDC) = (12² + 10² - 2.5²) / 240 = 23775/24000 = 317/320 = 0.990625
cos(BDA) = (12² + 7.5² - 5²) / 180 = 17525/18000 = 701/720 = 0.9736(1)
косинусы не равны ---> углы не равны ---> треугольники НЕ подобны)))
Для того, чтобы составить уравнение прямой, необходимо знать координаты направляющего вектора и координаты точки, принадлежащей этой прямой.
Общее уравнение прямой Ах+Ву+С=0
Направляющий вектор для прямой вектор СО. Для того, чтобы найти его координаты нужно из координат конца вектора вычесть соответствующие координаты начала вектора.
С(-6; -3), О(0; 0)
Вектор СО = (0-(-6); 0-(-3))
Вектора СО = (6;3)
Коэффициент А в уравнении прямой равен ординате направляющего вектора, взятой с противоположным знаком.
А=-у=-3
Коэффициент В в уравнении прямой равен абсциссе направляющего вектора.
В=х=6
Подставляем коэффициенты А и В в общее уравнение прямой.
-3х+6у+С=0
Теперь координаты точки, принадлежащей прямой, подставляем в полученное равенство и находим С.
Точка О(0;0) принадлежит прямой.
-3*0+6*0+С=0
С=0
-3х+6у=0 - искомое уравнение прямой. Левую и правую часть уравнения сократим на (-3).
Получим: х-2у=0
ответ: х-2у=0