Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см
Даны точки A: [-12;-4] B: [-5;-6] C: [0;3] .
Координаты вектора BC: (0 - (-5); 3 - (-6)) = (5; 9).
Длина вектора AB = √((-5)² + (-12)²) = √(25 + 144)= √169 = 13.
Координаты середины отрезка AC: ((-12+0)/2=-6; (-4+3)/2=-0,5) = (-6; -0,5).
Периметр треугольника ABC.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √53 ≈ 7,28011.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √106 ≈ 10,29563.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √193 ≈ 13,89244399.
Периметр равен Р = 31,46818.
Длина медианы BM. Точка М - середина АС:(-6; -0,5).
ВМ = √(-6-(-5))² + (-0,5-(-6))²) = √(1 + 30,25) = √31,25 ≈ 5,59017.