Четырёхугольник ABCD - параллелограмм.
ВЕ = DF (Е ⊂ ВС, F ⊂ AD).
Четырёхугольник AECF - параллелограмм.
Отсюда следует, что ∠В = ∠D, АВ = CD.
Рассмотрим ΔАВЕ и ΔCDF.
ВЕ = DF (по условию)
∠В = ∠D, АВ = CD (по выше сказанному) ⇒ ΔАВЕ = ΔCDF по двум сторонам и углу между ними (первый признак равенства треугольников).
Из равенства треугольников следует и равенство сторон АЕ и CF.
AD = BC (по свойству параллелограмма), но в своё очередь AD = BE + EC ; BC = DF + AF. Учитывая равенство из условия получаем, что ЕС = AF.
АЕ = CF ; ЕС = AF (по выше сказанному) ⇒ четырёхугольник AECF - параллелограмм.
Что требовалось доказать.
Четырёхугольник ABCD - параллелограмм.
ВЕ = DF (Е ⊂ ВС, F ⊂ AD).
Доказать :Четырёхугольник AECF - параллелограмм.
Доказательство :В параллелограмме противоположные углы и противоположные стороны равны между собой (свойство параллелограмма).Отсюда следует, что ∠В = ∠D, АВ = CD.
Рассмотрим ΔАВЕ и ΔCDF.
ВЕ = DF (по условию)
∠В = ∠D, АВ = CD (по выше сказанному) ⇒ ΔАВЕ = ΔCDF по двум сторонам и углу между ними (первый признак равенства треугольников).
Из равенства треугольников следует и равенство сторон АЕ и CF.
AD = BC (по свойству параллелограмма), но в своё очередь AD = BE + EC ; BC = DF + AF. Учитывая равенство из условия получаем, что ЕС = AF.
Если в четырёхугольнике противоположные стороны попарно равны, то этот четырёхугольник - параллелограмм (свойство параллелограмма).АЕ = CF ; ЕС = AF (по выше сказанному) ⇒ четырёхугольник AECF - параллелограмм.
ответ :Что требовалось доказать.
Знак ∪ использован, как знак дуги.
По условию ∪ВС - ∪АС = 40°, а ∪ВС + ∪АС = 180°, так как АВ - диаметр.
∪АС = (180° - 40°)/2 = 70°.
∪ВС = ∪АС + 40° = 110°
∠АВС вписанный, опирается на дугу АС, значит
∠АВС = ∪АС/2 = 70°/2 = 35°.
∠ВАС вписанный, опирается на дугу ВС, значит
∠ВАС = ∪ВС/2 = 110°/2 = 55°
Радиус, проведенный в точку касания, перпендикулярен касательной, поэтому ∠ОАВ = 90°.
∠ОАС = ∠ОАВ - ∠ВАС = 90° - 55° = 35°
Вписанный угол, опирающийся на полуокружность, прямой. Поэтому
∠АСВ = 90°.
∠АСО = ∠АСВ = 90° как смежные.
ΔАОС: ∠АСО = 90°, ∠ОАС = 35°
∠АОС = 90° - 35° = 55° так как сумма острых углов прямоугольного треугольника 90°.