Дано. Равносторонний треугольник АВС со стороной а=12√3. Найти расстояние от центра до его стороны.
Решение.
Центром равностороннего треугольника является точка пересечения медиан, высот, биссектрис и серединных перпендикуляров.
Проведем высоты (биссектрисы или медианы) в треугольнике.
Получили шесть равных прямоугольных треугольника, где один катет (ОМ) - это расстояние от центра до стороны треугольника АВС, а второй (АМ) - половина стороны треугольника равная 6√3, а углы равны 30*, 60* и 90*.
Искомое расстояние ОМ/АМ= tg30* (tg30*=√3/3). Тогда
Совершим параллельный перенос точки A вдоль прямой AB к середине AB. Обозначим ее как N. Поскольку AB || CD, а CD⊂(SCD), расстояние от A до (SCD) равно расстоянию от точки N до плоскости (SCD). На грани SCD проведем апофему (высоту из S). Она пересечет CD в точке M. Точка M является серединой CD, так как пирамида правильная (из этого следует, что SCD равнобедренный). NM || AD. Соответственно, в полученном треугольнике SNM высота из N на сторону SM будет являться перпендикуляром из N на плоскость (SCD), то есть длина высоты в треугольнике SNM из вершины N является искомым расстоянием. Рассмотрим треугольник SNM. Это равнобедренный треугольник, где SN = SM. Пусть O - проекция вершины пирамиды на плоскость основания пирамиды. Так как пирамида правильная, O является серединой NM, а SO - высотой треугольника SNM из вершины S. По условию, SO = 4 см, AD = 6 см. Так как AD = NM = 2OM, то OM = 6 см / 2 = 3 см. Из прямоугольного треугольника SOM находим SM: SM = √(SO²+OM²) = 5 см. Пусть искомое расстояние равно h. Площадь треугольника SNM найдем двумя 1) S = 1/2 * SO * NM 2) S = 1/2 * h * SM Приравняем их и выразим h: h = SO * NM / SM = 4 см * 6 см / 5 см = 4.8 см.
ответ: 6.
Объяснение:
Дано. Равносторонний треугольник АВС со стороной а=12√3. Найти расстояние от центра до его стороны.
Решение.
Центром равностороннего треугольника является точка пересечения медиан, высот, биссектрис и серединных перпендикуляров.
Проведем высоты (биссектрисы или медианы) в треугольнике.
Получили шесть равных прямоугольных треугольника, где один катет (ОМ) - это расстояние от центра до стороны треугольника АВС, а второй (АМ) - половина стороны треугольника равная 6√3, а углы равны 30*, 60* и 90*.
Искомое расстояние ОМ/АМ= tg30* (tg30*=√3/3). Тогда
ОМ = АМ*tg30* = 6√3*√3/3=6.
Рассмотрим треугольник SNM. Это равнобедренный треугольник, где SN = SM. Пусть O - проекция вершины пирамиды на плоскость основания пирамиды. Так как пирамида правильная, O является серединой NM, а SO - высотой треугольника SNM из вершины S. По условию, SO = 4 см, AD = 6 см. Так как AD = NM = 2OM, то OM = 6 см / 2 = 3 см. Из прямоугольного треугольника SOM находим SM: SM = √(SO²+OM²) = 5 см.
Пусть искомое расстояние равно h. Площадь треугольника SNM найдем двумя
1) S = 1/2 * SO * NM
2) S = 1/2 * h * SM
Приравняем их и выразим h:
h = SO * NM / SM = 4 см * 6 см / 5 см = 4.8 см.