АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ABCD-трапеция, BC и AD - основания
∠A = 90°, ∠D = 45°, BC = 4см, AB = 18см
BC
| | \
A||___\ D
E
Найти:
S(ABCD) - ?
Дополнительное построение: СЕ⊥AD
∠B = ∠A = ∠C = ∠E = 90° ⇒ ABCE - прямоугольник ⇒ AB = CE = 18см,
BC = AE = 4см
Рассмотрим ΔCED:
∠D = 45°
∠E = 90°
CE = 18 ⇒ ∠C = 90° - ∠D = ∠D = 45° ⇒ ΔCED -р/б ⇒ ED = CE =18см
AD = AE + ED = 4 + 18 = 22см
S(ABCD) = = = 234см²
S(ABCD) = 234см²
P.s: данные на чертёж заносить мне было проблематично, но это необходимо сделать. Мой чертёж чисто схематический, для представления фигуры создан.