Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника. Вписанная окружность - когда в треугольник вписать окружность, притом только одну. (тобишь окружность внутри треугольника и три его стороны идут как касательные к окружности), и в этом же случае треугольник описан вокруг окружности
здесь игра слов - что Вписано то внутри , что Описано то снаружи
чтобы построить вписанную окружность (тоесть описанный треугольник) берём произвольно окружность , и рисуем на ней хорду например АВ, с любой стороны от хорды на окружности отмечаем точку С и чертим отрезки АС и ВС
чтобы построить описанную окружность (тоесть вписанный треугольник) рисуем любой треугольник АВС, с двух углов треугольника опускаем перпендикуляры , точку их пересечения обозначаем за О (это центр окружности) , расстояние от О до точки А,В или С это радиусы окружности, задаём радиус циркулю, ставим циркуль в О и рисуем окружность
Вписанная окружность - когда в треугольник вписать окружность, притом только одну. (тобишь окружность внутри треугольника и три его стороны идут как касательные к окружности), и в этом же случае треугольник описан вокруг окружности
здесь игра слов - что Вписано то внутри , что Описано то снаружи
чтобы построить вписанную окружность (тоесть описанный треугольник) берём произвольно окружность , и рисуем на ней хорду например АВ, с любой стороны от хорды на окружности отмечаем точку С и чертим отрезки АС и ВС
чтобы построить описанную окружность (тоесть вписанный треугольник)
рисуем любой треугольник АВС, с двух углов треугольника опускаем перпендикуляры , точку их пересечения обозначаем за О (это центр окружности) , расстояние от О до точки А,В или С это радиусы окружности, задаём радиус циркулю, ставим циркуль в О и рисуем окружность
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25