Начертите ромб ABCD. Постройте образ этого ромба при:
а) симметрии относительно точки С;
б) симметрии относительно прямой АВ;
в) параллельном переносе на вектор АС;
г) повороте вокруг точки D на 60° по часовой стрелке.
Докажите, что прямая, содержащая середины двух параллельных хорд окружности, проходит через ее центр.
* Начертите два параллельных отрезка, длины которых равны. Начертите точку, являющуюся центром симметрии
(Желательно чтобы вы прикрепили фото с решением)
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2