У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Если я правильно поняла, то вписанный и центральный угол лежат на одной и той же дуге. Значит, рассмотри для начала центральный: этот угол равен 88*, а по теореме градусная мера центрального угла равна гр. мере дуги, на которую он опирается. Отсюда дуга будет равна 88*:
AC=88*.
Найдём теперь вписанный угол. В теореме о вписанном угле сказано, что он равен половине дуги, на которую опирается. Опирается он на дугу AC, значит, чтобы найти угол ABC, нужно AC разделить на 2:
Если я правильно поняла, то вписанный и центральный угол лежат на одной и той же дуге. Значит, рассмотри для начала центральный: этот угол равен 88*, а по теореме градусная мера центрального угла равна гр. мере дуги, на которую он опирается. Отсюда дуга будет равна 88*:
AC=88*.
Найдём теперь вписанный угол. В теореме о вписанном угле сказано, что он равен половине дуги, на которую опирается. Опирается он на дугу AC, значит, чтобы найти угол ABC, нужно AC разделить на 2:
AC/2=88/2= вычислишь сам/а.
Сложного ничего нет.