4. треугольники BMN и BAC подобны (кажется по 2 признаку :-) ) отсюда находим MN BN/MN=BC/AC 15/MN=20/15 MN=(15*15)/20=11.25 5. один из углов равен 45°, значит треугольник прямоугольный равнобедренный - третий угол также равен 45° и катеты соответственно равны. Находим их по теореме Пифагора. 2*AC²=8² 2*AC²=64 AC²=32 AC=4√2 В прямоугольном равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой, т.е. делит гипотенузу пополам. Отсюда находим высоту СD по теореме Пифагора. AC²-AD²=CD² (4√2)²-4²=32-16=16=CD² → CD=4
6. угол А равен 60°, следовательно угол В равен 30°. По теореме синусов находим второй катет АС. АС/sin30°=BC/sin60° AC=(BC/sin60°)*in30°=6√2*0.5=3√2. По теореме Пифагора находим гипотенузу АВ. АВ²=AC²+BC²=18+36=54 AB=√54=√9*√6=3√6 Площадь прямоугольного треугольника равна половине произведения катетов, т.е. S=0.5*(6*3√2)=0.5*18√2=9√2 Высоту, опущенную из вершины С (например CD), можно найти из другой формулы нахождения площади треугольника: площадь треугольника равна половине произведения стороны треугольника на высоту, опущенную на эту сторону, т.е. S=0.5*AB*CD 9√2=0,5*3√6*CD Отсюда CD=9√2/(0,5*3√6)=2√3
отсюда находим MN
BN/MN=BC/AC 15/MN=20/15 MN=(15*15)/20=11.25
5. один из углов равен 45°, значит треугольник прямоугольный равнобедренный - третий угол также равен 45° и катеты соответственно равны. Находим их по теореме Пифагора. 2*AC²=8² 2*AC²=64 AC²=32 AC=4√2
В прямоугольном равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой, т.е. делит гипотенузу пополам. Отсюда находим высоту СD по теореме Пифагора. AC²-AD²=CD² (4√2)²-4²=32-16=16=CD² → CD=4
6. угол А равен 60°, следовательно угол В равен 30°. По теореме синусов находим второй катет АС. АС/sin30°=BC/sin60° AC=(BC/sin60°)*in30°=6√2*0.5=3√2. По теореме Пифагора находим гипотенузу АВ. АВ²=AC²+BC²=18+36=54 AB=√54=√9*√6=3√6
Площадь прямоугольного треугольника равна половине произведения катетов, т.е. S=0.5*(6*3√2)=0.5*18√2=9√2
Высоту, опущенную из вершины С (например CD), можно найти из другой формулы нахождения площади треугольника: площадь треугольника равна половине произведения стороны треугольника на высоту, опущенную на эту сторону, т.е. S=0.5*AB*CD 9√2=0,5*3√6*CD Отсюда CD=9√2/(0,5*3√6)=2√3
1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Подробнее - на -
Объяснение: