Надо! стороны треугольника равны 25; 29 и 36 см. точка вне плоскости треугольника удалена от каждой из его сторон на 15см расстояние от точки до сторон треугольника равны найти это расстояние(рисунок тоже)
1) Проведем к стороне AB перпендикуляр P выходящий из точки B (при угольника или циркуля)
2) Проведем к стороне BC перпендикуляр S, который выходит из точки G, являющийся серединой BC (опять же все при угольника или циркуля.) Этот перпендикуляр называют серединным перпендикуляром к стороне BC.
3) В пересечении перпендикуляров P и S получаем точку O.
4) Начертим окружность c центром в точке O и проходящую через точку B.
5) В пересечении этой окружности и стороны AC получаем необходимую точку D.
Объяснение:
Поскольку радиус OB ⊥ AB, то AB является касательной к окружности в точке B.
В ΔСOB отрезок OG является медианой и высотой к стороне BC, а значит ΔСOB равнобедренный, а именно OС = OB, а значит OC тоже радиус данной окружности, иначе говоря, построенная окружность пересекает также и точку С, то есть AC является секущей, проходящей через данную окружность.
АВ хорда окружности с центром в точке О. Найдите угол АОВ, если угол АВО = 25°.
- - -
Дано :Окружность.
Точка О - центр данной окружности.
Отрезок АВ - хорда окружности.
∠АВО = 25°.
Найти :∠АОВ = ?
Решение :Рассмотрим ΔАВО.
Отрезки АО = ВО (так радиусы одной окружности), следовательно, ΔАВО - равнобедренный (по определению).
У равнобедренного треугольника углы у основания равны.Основание ΔАВО - отрезок АВ (так как АО и ВО - боковые стороны).
Тогда -
∠АВО = ∠ОАВ = 25°.
Сумма внутренних углов треугольника равна 180°.То есть -
∠АВО + ∠ОАВ + ∠АОВ = 180°
∠АОВ = 180° - ∠АВО - ∠ОАВ
∠АОВ = 180° - 25° - 25°
∠АОВ = 130°.
ответ :130°.
Шаги построения:
1) Проведем к стороне AB перпендикуляр P выходящий из точки B (при угольника или циркуля)
2) Проведем к стороне BC перпендикуляр S, который выходит из точки G, являющийся серединой BC (опять же все при угольника или циркуля.) Этот перпендикуляр называют серединным перпендикуляром к стороне BC.
3) В пересечении перпендикуляров P и S получаем точку O.
4) Начертим окружность c центром в точке O и проходящую через точку B.
5) В пересечении этой окружности и стороны AC получаем необходимую точку D.
Объяснение:
Поскольку радиус OB ⊥ AB, то AB является касательной к окружности в точке B.
В ΔСOB отрезок OG является медианой и высотой к стороне BC, а значит ΔСOB равнобедренный, а именно OС = OB, а значит OC тоже радиус данной окружности, иначе говоря, построенная окружность пересекает также и точку С, то есть AC является секущей, проходящей через данную окружность.
Но тогда по теореме касательной и секущей имеем:
AB^2 = AC * AD