Также мы знаем теорему равнобедренного треугольника:
У равнобедренного треугоника углы при основании равны.
Значит, угол С= углу А=58*
Рассмотрим треугольник АDC. Так как АD биссектриса значит, чтобы найти угол А в треугольнике АDC, нам надо 58*:2, так как биссектриса делит угол пополам.
Угол А=58*:2= 29*
Угол А=29*
Теперь мы знаем два угла и соотвественно по этим двум углам мы сможем найти угол АDC по теореме сумма углов треугольника:
Сумма углов треугольника равна 180*
Значит, чтобы найти угол АDC нам надо, из 180*-(58*+29*)= 93*
Проведем МN||АВ..
Четырехугольник КВNM - параллелограмм по построению =>
MN=ВК
Рассмотрим треугольники АКМ и СNМ
В равнобедренном треугольнике АВС углы при основании АС равны. =>
∠ВАМ=∠ВСМ
∠АКМ=∠СNМ=∠АВС - соответственные при параллельных прямых и секущей.
Если в треугольниках два угла равны, то равны е третьи углы. => ∠КАМ=∠NMC
ΔАКМ = ΔСNM по второму признаку равенства треугольников. Сходственные элементы равных треугольников равны. =>
АМ=СМ, ч.т.д.
————
Или:
КМ||ВС по условию,, ⇒∠КМА=∠ВСМ - соответственные при параллельных прямых КМ и ВС и секущей АС.
Δ АВС равнобедренный ⇒ ∠ВАС=∠ВСА, следовательно, в ∆ АКМ углы при М и А равны, ∆ АКМ - равнобедренный. КА=КМ=ВК
КМ параллельна ВС ⇒ КМ - средняя линия ∆ АВС и М - середина АС. Отсюда следует равенство АМ=МС.
Угол АDC=93*
Объяснение:
Дано:
Равнобедренный треугольник АВС
Основания АС
АD- биссектриса.
Угол С=58*
Найти: угол АDC.
Мы знаем что, угол С=58*
Также мы знаем теорему равнобедренного треугольника:
У равнобедренного треугоника углы при основании равны.
Значит, угол С= углу А=58*
Рассмотрим треугольник АDC. Так как АD биссектриса значит, чтобы найти угол А в треугольнике АDC, нам надо 58*:2, так как биссектриса делит угол пополам.
Угол А=58*:2= 29*
Угол А=29*
Теперь мы знаем два угла и соотвественно по этим двум углам мы сможем найти угол АDC по теореме сумма углов треугольника:
Сумма углов треугольника равна 180*
Значит, чтобы найти угол АDC нам надо, из 180*-(58*+29*)= 93*
Угол АDC=93*
ответ: Угол АDC=93*