Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
P=16 см Угол ABC=120° Т.к все стороны ромба равны, то AB=BC=CD=DA=P/4=16/4=4 см Угол BCD=60°(т.к (360°-120°-120°):2=60° по сумме углов четырёхугольника) Т.к диагонали ромба являются и биссектрисами, то Угол ABD= Угол DBC = Угол CDB = Угол BDA = 120°/2=60° Треугольник BOC= Треугольник COD= Треугольник ODA=Треугольник OBA (по стороне и двум прилежащим к ней углам) Рассмотрим Треугольник BOC: Он прямоугольный, т.к диагонали ромба взаимноперпендикулярны Т.к OC - биссектриса угла BCD, то Угол BCO=60°/2=30° Катет, лежащий против Угла 30°, равен половине гипотенузы BO=BC/2=4/2=2 см Воспользуемся теоремой Пифагора c²=a²+b² BC²=BO²+OC² 4²=2²+OC² OC²=16-4 OC²=12 OC= Т.к диагонали ромба точкой пересечения делятся пополам, то BD=2*BO=2*2=4 CA=2*CO=2*= ответ: Диагонали равны 4 см и см
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Угол ABC=120°
Т.к все стороны ромба равны, то
AB=BC=CD=DA=P/4=16/4=4 см
Угол BCD=60°(т.к (360°-120°-120°):2=60° по сумме углов четырёхугольника)
Т.к диагонали ромба являются и биссектрисами, то
Угол ABD= Угол DBC = Угол CDB = Угол BDA = 120°/2=60°
Треугольник BOC= Треугольник COD= Треугольник ODA=Треугольник OBA (по стороне и двум прилежащим к ней углам)
Рассмотрим Треугольник BOC:
Он прямоугольный, т.к диагонали ромба взаимноперпендикулярны
Т.к OC - биссектриса угла BCD, то Угол BCO=60°/2=30°
Катет, лежащий против Угла 30°, равен половине гипотенузы
BO=BC/2=4/2=2 см
Воспользуемся теоремой Пифагора
c²=a²+b²
BC²=BO²+OC²
4²=2²+OC²
OC²=16-4
OC²=12
OC=
Т.к диагонали ромба точкой пересечения делятся пополам, то
BD=2*BO=2*2=4
CA=2*CO=2*=
ответ: Диагонали равны 4 см и см