Напиши уравнение прямой ax+by+c=0, все точки которой находятся на равных расстояниях от точек A(4;3) и B(5;7). (В первое окошко пиши положительное число. Числа в ответе сокращать не нужно!) ?⋅x+?⋅y+?=0.
Как это нередко бывает, в решении больше рассуждений, чем вычислений. Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками. Обозначим расстояние от А до | АС, от В до | - ВК, точку пересечения АВ с прямой | обозначим О. Рассмотрим рисунок. Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны. Здесь равны вертикальные углы при вершине О. Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3 Следовательно, отношение их гипотенуз ВО:ОА=3 ВО=3АО. АВ=ВО+АО=4АО Найдем и обозначим середину АВ точкой М. Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой | АМ=АВ:2=2 АО. ОМ=АО. Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны. Следовательно, МН=АС=12 см [email protected]
Как это нередко бывает, в решении больше рассуждений, чем вычислений. Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками. Обозначим расстояние от А до | АС, от В до | - ВК, точку пересечения АВ с прямой | обозначим О. Рассмотрим рисунок. Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны. Здесь равны вертикальные углы при вершине О. Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3 Следовательно, отношение их гипотенуз ВО:ОА=3 ВО=3АО. АВ=ВО+АО=4АО Найдем и обозначим середину АВ точкой М. Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой | АМ=АВ:2=2 АО. ОМ=АО. Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны. Следовательно, МН=АС=12 см [email protected]
Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками.
Обозначим расстояние от А до | АС, от В до | - ВК,
точку пересечения АВ с прямой | обозначим О.
Рассмотрим рисунок.
Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны.
Здесь равны вертикальные углы при вершине О.
Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3
Следовательно, отношение их гипотенуз
ВО:ОА=3
ВО=3АО.
АВ=ВО+АО=4АО
Найдем и обозначим середину АВ точкой М.
Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой |
АМ=АВ:2=2 АО.
ОМ=АО.
Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны.
Следовательно,
МН=АС=12 см
[email protected]
Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками.
Обозначим расстояние от А до | АС, от В до | - ВК,
точку пересечения АВ с прямой | обозначим О.
Рассмотрим рисунок.
Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны.
Здесь равны вертикальные углы при вершине О.
Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3
Следовательно, отношение их гипотенуз
ВО:ОА=3
ВО=3АО.
АВ=ВО+АО=4АО
Найдем и обозначим середину АВ точкой М.
Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой |
АМ=АВ:2=2 АО.
ОМ=АО.
Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны.
Следовательно,
МН=АС=12 см
[email protected]